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Abstract

Driving anomaly detection in dashcam videos begin to draw
research interests recently in advanced driver assistance sys-
tems, including self-driving cars. Commonly, motion clues
are usually utilized in these works. The motion of anomaly in
dashcam videos has more ambiguities than that of surveil-
lance videos, which hinders to train a supervised discrim-
inator. To address this problem, we formulate an unsuper-
vised multi-layer sifting process fulfilled by a simple but ef-
fective Multi-layer Isolation-based Sifter (MLayer-iSifter),
which consists of alternatively spatial-temporal pruning lay-
ers and isolation forest decision layers. The behind idea is to
eliminate the driving motion ambiguity in the dynamic traf-
fic scenes by gradually improving the discriminative ability
of the sifted normal motion patterns, and this is successfully
fulfilled by increasing the number of layers of MLayer-iSifter.
This paper represents the motion of videos by aggregating
multiple conv-layers of a pre-trained CNN model coupling
a temporal consistency measurement. The obtained spatio-
temporal motion representations of videos are then fed into
MLayer-iSifter to simultaneously find the spatial anomaly re-
gions and temporal anomaly frames. Extensive experimental
results on a dataset with 106 videos manually annotated care-
fully by ourselves demonstrate the favorable performance.

Introduction
More and more research efforts have been put on advanced
driving systems in recent years, including the self-driving
cars, and the research purpose becomes pursuing safer, ag-
iler and more dexterous driving experiences than ever. In
order to make intelligent vehicles respond to various driv-
ing situations/scenarios smart and immediately, unexpected
driving anomalies should be paid more attention for truly
safe driving compared with the normal driving situations.

Generally, detecting driving behaviour anomaly in dash-
cam videos becomes difficult especially because of the dras-
tic camera motion and chaotic background, and these is-
sues further cause large ambiguities between anomaly and
normal driving behaviours. Recent research in computer vi-
sion has began to address this problem from different views.
For instance, Kataoka et al. (Kataoka et al. 2018a; 2018b)
and Chan et al. (Chan et al. 2016) anticipated the traffic ac-
cident through adaptive loss and dynamic-spatial-attention
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Figure 1: Some typical situations from normal (the first row) to
abnormal (the second row) and the detected spatial anomaly confi-
dence maps by the proposed method (the third row). The anomaly
situations are (a) tire blowout, (b) sudden bombing of a car, (c) a
car is rushing into the snowy roadside, and (d) a truck suddenly
hits a car. Note that, it is difficult to detect pedestrians or vehicles
in these situations, and these driving anomalies are unpredictable
without any omens.

(DSA) recurrent neural network (RNN), respectively. Yuan
et al. (Yuan, Fang, and Wang 2018) addressed the driv-
ing anomaly by incremental motion consistency measure-
ment. However, these methods demonstrate at least two dis-
advantages. 1) They focus on predicting the future acci-
dent based on the historical observations, and concentrate
on the moving pedestrians or vehicles pre-detected. How-
ever, many kinds of driving anomalies occur suddenly and
unpredictable, and pre-trained detectors can not cover all ab-
normal situations in traffic scenes, such as the tire blowout
and bombing of cars, shown in Fig. 1(a) and Fig. 1(b), re-
spectively. 2) The anomaly motion in dashcam videos has
large ambiguity with dynamic background and other mov-
ing objects, which hinders to train a supervised classifier.

In this paper, we propose an unsupervised approach to
detect the spatial-temporal anomaly within many unlabeled
dashcam videos by learning the normal motion representa-
tion from themselves, and we believe a good normal motion
representation in driving is a big help for driving motion
anomaly detection. Therefore, we achieve normal motion
representation of driving by making a trade-off between two
conflictive goals: boosting its compactness while improv-
ing its discriminative ability. These two goals usually are
conflictive because more compact normal patterns may have
weaker discriminative ability since it cannot represent large
variations of the dataset. We address this issue through an



unsupervised multi-layer sifting process. This process is
fulfilled through a simple yet effective Multi-layer Isolation-
based Sifter (MLayer-iSifter) which consists of alternatively
spatial-temporal pruning layers and isolation forest decision
layers. We formulate the driving motion anomaly detection
as a two-stage procedure: normal motion sifting of group
videos (i.e., normal driving motion representation) and ab-
normal motion sifting of individual video (i.e., abnormal
driving motion discrimination).

In particular, we adopt a promising multi-layer-
convolutional feature map aggregation (Yu, Wang,
and Darrell 2018) to represent the spatial motion of the
video and aggregate them in frame-level. Inspired by that
the feature maps of a deep-convolutional layer represent the
part-proposals (Xu et al. 2018) of the image, the spatial
anomaly regions can be directly obtained from inferring the
anomaly of these part-proposals. The temporal consistency
of the spatial-temporal motion is measured with a Gaussian
process regressor (GPR) (Ounpraseuth 2006), where each
frame’s motion consistency within a temporal interval is
considered for restraining the motion estimation error and
manifesting the large temporal variation which potentially
contains anomaly.

The contributions of this work are twofold.
(1) The MLayer-iSifter architecture can eliminate the mo-

tion ambiguity of driving anomaly in dashcam videos by in-
creasing the number of of layers, and simultaneously find
out the reliable spatial-temporal driving anomaly efficiently.

(2) A new dataset containing 106 video clips (100
frames/clip) was constructed. We manually labeled both
temporal anomaly frames and spatial anomaly regions of all
the video clips.

Extensive experimental results demonstrate that our
method can detect spatial-temporal driving motion anomaly
much more accurately than the state-of-the-arts.

Related Work
Video anomaly is commonly defined as the target behaviour
with rarity occurrence, dissimilar pattern with pre-defined
normal model/rules, and deviated context (Chandola, Baner-
jee, and Kumar 2009; Giorno, Bagnell, and Hebert 2016).
Many efforts are devoted to normal behaviour modeling,
spatial and temporal consistency/dependency measurement
of behaviours explored by anomaly detection in surveil-
lance systems and advanced driving systems, including self-
driving cars (Zhang et al. 2017).

Normal Behaviour Modeling. For modeling the normal
behavior, exploiting the normal rules contained in the tra-
jectories is a standard approach (Laxhammar and Falkman
2014; Jiang, Wu, and Katsaggelos 2009), which can cap-
ture the long-term semantics of objects while often fails to
track accurately because of various disturbing factors, e.g.,
occlusion, fast motion, similar object surrounded, and so
on. Alternatively, recent approaches unitized the hand-craft
low-level features (e.g., HOG, HOF, STIPs, etc.) extracted
from 2D region(s) or 3D volumes. Commonly, these locally
low-level features are feeded into various detectors trained
by normal samples, such as distance-based (Cheng, Chen,

and Fang 2015), sparse-coding (Zhao, Li, and Xing 2011;
Luo, Liu, and Gao 2017), domain-based (one class SVM)
(Chen, Qian, and Saligrama 2013), probabilistic-based (e.g.,
mixture of probabilistic PCA (MPPCA) (Kim and Grauman
2009) and Gaussian process regressor (Cheng, Chen, and
Fang 2015)), Graph-based inference machines (Liu, Ting,
and Zhou 2012) and physical-inspired models (Mehran,
Oyama, and Shah 2009). Some recent models adopted au-
toencoders (Tran and Hogg 2017) to learn deep features, ex-
pressive CNNs (Sabokrou et al. 2016; 2017) or predictive
RNNs (Chan et al. 2016; Kiran, Thomas, and Parakkal 2018)
by minimizing the reconstruction/expression/prediction er-
ror of the input samples. In relative to this paper, Chan et
al. (Chan et al. 2016) proposed a dynamic-spatial-attention
(DSA) recurrent neural network (RNN) for anticipating ac-
cidents in dashcam videos. Most of normal behaviour mod-
eling methods need plenty of annotated training data, while
it is difficult to discriminate the abnormal against normal
motion in driving scenarios.

Spatial and Temporal Consistency Measurement.
Spatial-temporal consistency is mainly inspired by the co-
occurrence of appearance or motion patterns in spatial re-
gions over time, and filters the local anomaly scores ob-
tained by normal discriminators (e.g., hidden Markov model
(HMM) (Kratz and Nishino 2009), Gaussian mixture model
(GMM) (Basharat, Gritai, and Shah 2008), mixture of dy-
namic texture (MDT) (Li, Mahadevan, and Vasconcelos
2014), Gaussian process regression (GPR) (Cheng, Chen,
and Fang 2015)). For example, Yuan et al. (Yuan, Fang, and
Wang 2015) utilized spatial-temporal context consistency
of pedestrians to conduct the crowd anomaly, and had ad-
dressed the driving anomaly by motion consistency (Yuan,
Fang, and Wang 2018). For representing the spatial-temporal
consistency, some works embedded the high-level structured
consistency for anomaly detection in videos, such as the fea-
ture grouping of individuals by manifold learning (Rao et al.
2016). Additionally, because of the great success of CNN or
RNN approaches in many visual tasks, the latest approaches
checked the spatial-temporal consistency by exploiting the
dependency of the behaviors between frames, such as LSTM
predictor (Kiran, Thomas, and Parakkal 2018) and sequen-
tial generator (Liu et al. 2018). For instance, Liu et al. (Liu
et al. 2018) leveraged a future frame prediction based frame-
work for anomaly detection by generative adversarial net-
work (GAN). These aforementioned methods usually treat
the spatial and temporal anomaly in two separate stages,
which may easily cause mistaken detections if the output of
the first-stage contain errors.

Proposed Method
The multi-layer sifting process includes two stages: normal
motion sifting of group videos and abnormal motion sift-
ing of individual video. In each sifting process, there is one
common preliminary component: spatial-temporal motion
aggregation. The architecture of the proposed method is il-
lustrated in Fig. 2. We will elaborate its two main compo-
nents: 1) spatial-temporal motion aggregation, and 2) driv-
ing motion anomaly detection which is implemented by a
multi-layer isolation-based sifter (MLayer-iSifter).
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Figure 2: The architecture of the proposed method. The first row is the procedure of normal motion sifting of group videos. The second row
is the abnormal motion sifting process of individual video, and the spatial-temporal motion aggregation is presented in the bottom row. The
spatial driving motion anomaly is determined by averaging the summation of the selected feature maps (corresponding to abnormal feature
channels) in each layer, which is designed to take out the true anomaly and depressing the false-alarm in different number of layers. Temporal
driving motion anomaly is obtained by summarizing the anomaly scores after each forest decision layer for certain frames.

Spatial-temporal Motion Aggregation (STMA)
We first estimate the motion of each two adjacent frames
(In this paper, an efficient method (Liu 2009) is used). Here,
instead of using histogram to represent the optical flow, we
feed the pseudo colorized optical flow image through a pre-
trained CNN model to obtain the spatial motion represen-
tation. We hierarchically aggregate multiple convolutional
layers (it is denoted as conv-layers distinguishing from the
layer term used in MLayer-iSifter.) of feature maps. Because
traffic scenes are dynamic, we further introduce the Gaus-
sian process regressor to restrain the motion estimation er-
ror of optical flow and measure the temporal motion consis-
tency within a temporal interval. The spatial-temporal mo-
tion aggregation is divided into spatial motion aggregation
and temporal motion regression.

Spatial Motion Aggregation. Given a video V with
F frames, we first compute the optical flow Mi of the
ith frame of V . Then we pass Mi through a pre-trained
CNN model and obtain multiple convolutional feature maps
{Fi,1 ∈ RW1×H1×C1 , ...,Fi,k ∈ RWk×Hk×Ck , ...,Fi,K ∈
RWK×HK×CK}, where k ∈ [1,K] is the conv-layer num-
ber, and Wk, Hk and Ck are the width, height and chan-
nels of feature maps in the kth convolutional layer. These
tensors are transformed into vectors by global average pool-
ing (Zhou et al. 2016):

vi,k =
1

Hk ∗Wk

∑
Hi

∑
Wi

Fi,k. (1)

The motion representation of the ith frame is concate-
nated as vi=[vi,1,vi,2, ...,vi,k]∈R1×

∑
Ck , and the spatial-

temporal motion representation of video V with F frames is

denoted as V = [v1, ...,vF ] ∈ RF×
∑
Ck . The weight for

convolutional filters over frames are shared.
Temporal Motion Regression. Gaussian process regres-

sor aims to compute the residual between the spatial motion
representation of a frame with its regressed value. This con-
sideration involves two underlying factors. First, the convo-
lutional filters in different frames are shared where each fil-
ter focuses on the same semantic parts within the frames,
i.e., the feature channels over frames have temporal consis-
tency.Second, there may be estimation error in optical flow
which should be restrained, and the temporal variation po-
tentially caused by anomaly needs to be manifested.

The formulation of Gaussian process regressor follows
Gaussian process regression (GPR), but without any super-
vising label. To be specific, for the spatial-motion represen-
tation V ∈ RF×

∑
Ck , this work treats the frame indexes as

the observed data x ∈ RF×1 = [x1, ..., xf , ..., xF ], where f
is the frame index, and the cth column of V as the predicted
label yc ∈ RF×1, where c is the channel index of V and
c ∈ [1,

∑
Ck]. The predicted error dc is denoted as:

dc = yc − y∗c , (2)

where y∗c is computed by GPR:

p(y∗c |x,yc,x∗) ∼ N (ȳ∗c ,Σy∗c ), (3)

where x∗ and y∗c denote the testing data and its corre-
sponding label, respectively. Note that x=x∗ in our work,
i.e., the frame indexes. y∗c = KT

∗ (K + σ2
nIn)−1yc and

y∗c = K∗∗ − KT
∗ (K + σ2

nIn)−1K∗, where In is an iden-
tity matrix, and K∗∗, K∗ and K are the covariance matrixes
denoted by k(x∗,x∗), k(x,x∗) and k(x,x). They are the



same and can be computed once in this paper. k(xf , x
′
f ) is

the covariance function evaluated based on the radial basis
function (RBF) kernel (Ounpraseuth 2006).

k(x, x′) = σ2
V exp(−

(xf − x′f )
2

2l2
) + σ2

nδ(xf − x′f ), (4)

where xf ∈ x, xf ∈ x∗, and δ(xf − x′f ) is the Kronecker
delta. It is worthy noting that hyper-parameters in RBF ker-
nel include the scale l, the signal variance σ2

V , and the noise
variance σ2

n, and they can be determined by maximizing the
marginal likelihood of the observed data with the conjugate
gradient method.

Consequently, we conduct Gaussian process regression on
each column of V, and transform it as D ∈ RF×

∑
Ck =

[d1, ...,dc, ...,d∑
Ck

]. Actually, D represents the residual
between the aggregated spatial motion representations of the
frames and their regressed values by consistency measure-
ment in a temporal interval, and we found this consideration
can largely boost the performance.

Driving Motion Anomaly Detection
Assume there are N available dashcam videos. Their
motion representations after STMA is defined as D =
{D1, ...,Dn, ...,DN}. As aforementioned, in order to detect
the driving motion anomaly within Dn, we need to learn the
normal motion representations of driving in D.

Normal Motion Sifting of Group Videos. This proce-
dure is through a multi-layer architecture, and aims to solve
the conflictive goals: making the normal representation com-
pact while improving its discriminative ability by increas-
ing the number of layers. It contains alternatively spatial-
temporal pruning layers and temporal isolation forest deci-
sion layers. We concatenate the spatial-temporal motion of
group videos in frame-level, i.e., rearranging D as a matrix
W = [DT

1 , ...,D
T
n , ...,D

T
N ]T ∈ R

∑N
n=1 Fn×

∑
Ck , which

denotes the input of the first layer of the multi-layer archi-
tecture, where Fn is the frame number of Dn. Assume W
is changed as Wl ∈ RPl×Ql in the lth layer, where Pl and
Ql are the corresponding number of frames and channels,
respectively (P1 =

∑N
n=1 Fn, Q1 =

∑
Ck).

Spatial-temporal pruning layer: This layer aims to select
the normal part proposals (Xu et al. 2018), i.e., the feature
channels responding to the normal motion parts in frames.
In other words, this layer obtains a subset El ⊂ Wl after
pruning some channels (denoting as E′l) of Wl. The pruning
layer conducts an operation of:

El = Wl\E′l. (5)
For this operation, this paper evaluates the variance of

each column of Wl because frequent appearing and disap-
pearing of objects within a video will cause large variances
over temporal frames. On the contrary, the stable and normal
motion parts of the scene over frames have smaller variance,
and vice versa for anomaly motion parts. To be specific, the
set of variance V (Wl) = [v1l , ..., vql , ..., vQl

] of Wl over
frames is computed by:

vql =
1

Pl

Pl∑
f=1

(gqlpl − ḡ
ql)

2
, (6)

where gqlpl is the motion value in the plth row of the qlth

column of Wl, in which pl ∈ [1, Pl]. ḡql is the average value
of gqlpl . Then we sort V (Wl) as Ṽ (Wl) in ascending order
and pick El by:

El = {wql ∈Wl|vql < ηl}, (7)

where wql is the qlth column vector of Wl, ηl is a threshold
for separating the motion into normal motion parts and ab-
normal ones. Here, ηl is set as the (

∑
Ck

α )th value in Ṽ (Wl),
where α determines the capacity of normal sifting in each
layer. The larger the α is, the more compact the sifted normal
motion patterns are, whereas the weaker discriminative abil-
ity the normal motion patterns have, and vice versa. In this
paper, we empirically set α as 2. The pruning layer makes
the spatial motion part compact with the help of their tem-
poral variances.

Temporal isolation forest decision layer: The pruning
layer aims to make the normal motion patterns compact,
while this layer instead is to improve the discriminative abil-
ity of the sifted normal motion patterns. In this layer, we find
a subset Wl+1 ⊂ El in El that is closer to anomaly than the
remaining items.

For this purpose, this paper introduces the isolation for-
est (iForest) (Liu, Ting, and Zhou 2012) because of its
linear complexity, effectiveness and minimum memory-
requirement. Isolation forest, containing λ isolation trees
(iTrees), is constructed by recursively partitioning the sub-
instance set with size s (a part of the whole instance set) on
each tree until all of them become a singleton, and resulting
in proper binary tree set such that the number of nodes of a
tree is 2s− 1, where the instance is commonly a vector. The
outlier score of an instance x is determined by averaging its
path length p(x) on each iTree:

A(x) = 2−p(x)/c(s), (8)

where c(s) = 2H(s−1)−2(s−1)/γ, γ is the total instance
number, H specifies the harmonic number, and P (x) is the
average path length of x on λ iTrees.

This layer conducts the following operations:

iForestl = iForesttrain(El, λ, s),

A(El) = iForesttest(iForestl,El),

Wl+1 = {epl ∈ El|A(epl) > A(El)},
(9)

where epl is the pthl row vector of El, iForesttrain(·) and
iForesttest(·) are the procedures of training the iForest
with instances and evaluating the anomaly of instances, re-
spectively. iForestl denotes the encoded iForest in lth layer,
which will be utilized to determine anomaly, and A(El) is
the average anomaly score over all rows in El. For λ and
s, we follow the setting strategy of (Liu, Ting, and Zhou
2012), i.e., λ = 100 and s = 256 in our experiments.

In order to achieve a compact representation of normal
patterns, we feed Wl+1 to the next pruning layer, and repeat
this until only one feature channel is left. Assume L layers
are generated after this stage.

Abnormal Motion Sifting of Individual Video. This
procedure is also a multi-layer architecture. The structure is



similar to normal motion sifting but with modifications for
pruning layer and isolation forest decision layer. The tempo-
ral anomaly frames and spatial anomaly regions are simulta-
neously localized in this stage.

For the spatial-temporal motion representation of the nth

video Dn ∈ RFn×
∑
Ck , assume it is changed into Ol by

passing it into the following alternative pruning layers and
isolation forest decision layers.

Spatial-temporal pruning layer: Similar to normal motion
sifting, this layer also computes the variance of each column
of Ol by Eq. 6. We denote the variance set as V (Ol). Dif-
ferently, we sort V (Ol) as Ṽ (Ol) in descending order, and
pick the subset Ql ⊂ Ol whose column variances are larger
than the (

∑
Ck

2 )th value of Ṽ (Ol).
Isolation forest decision layer: We compute the anomaly

scores of frames in Ql by the encoded iForestl in normal
motion sifting process, i.e.,

A(Ql) = iForesttest(iForestl,Ql),

Ol+1 = {qfl ∈ Ql|A(qfl) > A(Ql)},
(10)

where qfl is the flth row vector of Ql, and A(Ql) is the
anomaly score in lth layer over the rows of Ql. Then Ol+1

is fed into the next pruning layer until l = L.
Temporal Anomaly Determination. After passing Dn

through L layers for sifting anomaly, the temporal anomaly
T fa of the f th ∈ [1, Fn] frame in the nth dashcam video is
determined by summarizing the anomaly scores of different
number of layers, i.e.,:

T f
a =

L∑
l=1

A(Ql)|f , (11)

Then we re-weight the temporal anomaly score to the range
of [0, 1] for Dn by a min-max normalizer.

Spatial Anomaly Determination. The pruning layer
aims to select the anomaly channels of STMA of a video,
and the selected channels link the feature maps denoting the
part-proposals (Xu et al. 2018). In fact, in each anomaly sift-
ing layer, the selected anomaly part-proposals of a frame
reflect its anomaly confidence maps. In order to obtain a
reasonable determination, we design a fusion strategy which
firstly obtains an anomaly confidence map by summarizing
the selected anomaly part-proposals in each layer, and then
average these anomaly confidence maps of all layers, i.e.,:

Sf
a =

1

L

L∑
l=1

Bl∑
b=1

Ff
l,b, (12)

where Bl is the left number of channels in the lth layer, and
f is the frame index. Note that, the anomaly channels may
come from different conv-layers of feature maps. Therefore,
we resize Ffl,b as the original size of image by bilinear in-
terpolation. We normalize Sfa by the min-max normalizer.
For the whole video, we incorporate the temporal anomaly
scores and spatial anomaly maps together by T fa × Sfa .

Experiments
In this section, firstly, the evaluation metrics and dataset are
described. Note that the multi-layer normal motion sifting

process is conducted by feeding the spatial-temporal mo-
tion representations of all videos in the dataset. Secondly,
the performance on different number of layers for abnormal
motion sifting is evaluated. Finally, the comparison between
the proposed method and five state-of-the-art approaches are
presented for validating the superiority, as well as their com-
putational cost analysis.

For the spatial-temporal motion aggregation, we utilize
Conv2, Conv5 and fc6 layers of a pre-trained VGG-F
model (Chatfield et al. 2014) on ImageNet to represent the
multi-scale motion feature per frame. Note that the pre-
trained model here also can be replaced by other CNN mod-
els. We use the open-source library MatConvNet (Vedaldi
and Lenc 2015) for conducting experiments. All the exper-
iments are run on a computer with an Intel i7 CPU and 8G
memory.

Dataset and Evaluation Metrics
According to our knowledge, there is no publicly avail-
able dataset with a temporal-spatial labeling for driving mo-
tion anomaly detection. The most relative one is the crowd-
sourced dashcam video dataset for accident anticipation 1

contributed by (Chan et al. 2016), in which each video has
100 frames and the last 10 frames are temporally labeled as
anomaly. Apparently, this setting is not universal in prac-
tice. In addition, Kataoka et al. (Kataoka et al. 2018a;
2018b) constructed an accident video benchmark with 6000
clips. However, the clips are only temporally labeled and
not publicized. Hence, we construct a new dataset (Drive-
Anomaly106) containing 106 video clip (100 frames per
clip) which are under various weather condition (day, night-
fall, night, snowy, rainy, foggy, etc.) and manual annotated
carefully for both temporal and spatial anomaly. Some of
them are collected from (Chan et al. 2016). The resolution
of the frame is 476 × 265, and the anomaly regions are
masked by their instance-level contours. For anomaly la-
beling, we adopt two principles: 1) The anomaly is object-
oriented and threatening to the ego-vehicle, such as vehi-
cle crossing, overtaking, and so on; 2) The anomaly owns
a manifest trend to cause an accident with ego-vehicle or
other objects. Spatial anomaly regions and temporal frames
are labeled by five volunteers with over ten years of driving
experience and their common labeling results are reserved.

For the evaluation metrics, following the video anomaly
detection methods (Liu et al. 2018; Giorno, Bagnell, and
Hebert 2016), we employ the standard frame-level and pixel-
level ROC and area under ROC (AUC) to quantitatively
qualify the performance. Specifically, the spatial anomaly
detection performance is further evaluated by the ratio of
anomaly region detection (RD), as was explained in Li et al.
(Li, Mahadevan, and Vasconcelos 2014).

Evaluation on Different Number of Layers
Since this work proposes a multi-layer sifting process for
abnormal driving motion detection, we will evaluate the per-
formance of of the proposed method with different number
of layers. The number of layers in the proposed framework

1http://aliensunmin.github.io/project/dashcam/
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Figure 3: The frame-level anomaly detection AUC values and
pixel-level ones w.r.t., different number of layers.

is automatically determined. In the experiment, 6 layers are
generated. Fig. 3 shows the pixel-level AUC in conjunc-
tion with the frame-level AUC value tendency with different
number of layers. Fig. 4 shows some detection results of spa-
tial anomaly regions. These results show that the temporal
anomaly detection performance demonstrates a manifest in-
crease by increasing the number of layers, whereas the spa-
tial anomaly detection performance increases till three lay-
ers and descends drastically after five and six layers. After
checking the reasons, we find that this phenomena is caused
by that fewer channels are left in more layers (2 channels
left after 5 layers and only one channel left for after 6 lay-
ers), where the left anomaly motion parts cannot cover the
complete anomaly regions even with an entire zero map.
However, the layer fusion strategy can take out the anomaly
regions in most configurations of different number of lay-
ers, and depress the false-alarm, as shown in Fig. 4. The
Gaussian process regressor can significantly boost the per-
formance because of the temporal consistency measurement,
from the results of “3-layers\GPR” shown in Fig. 3.

Comparison with Five State-of-the-art Methods
In order to prove the superiority of the proposed method,
we compare our methods with five representative works, viz.
off-the-shelf IForest (Liu, Ting, and Zhou 2012), One-class-
SVM (OC-SVM) (Tax and Duin 2004), robust deep auto-
encoder (RDA) (Zhou and Paffenroth 2017), discriminative
video anomaly detection framework (DVAD) (Giorno, Bag-
nell, and Hebert 2016), and incremental driving anomaly de-
tection (IGRLSS) (Yuan, Fang, and Wang 2018).

We perform iForest, OC-SVM and RDA on the Conv2
layer of VGG-F model (Chatfield et al. 2014) with the size
of 27*27*64 for each frame to detect the spatial anomaly re-
gions, and we resize the spatial anomaly map as the same
size of original frame by bilinear interpolation. Then, we
detect the temporal anomaly frames by iForest, OC-SVM
and RDA with the same feature representation of this work.
Therefore, for a video, iForest, OC-SVM and RDA are tem-
porally performed on a matrix with the size of 100*576
and generate anomaly vector with the size of 100*1. Ac-
tually, this separated detection strategy can get higher per-
formances by iForest, OC-SVM and RDA for frame-level
and pixel-level evaluation than that of putting all local re-
gion features of frames together2. For DVAD, we use the im-
plementations of (Giorno, Bagnell, and Hebert 2016) which

2We performed iForest, OC-SVM and RDA on the Conv5

utilized the feature of (Lu, Shi, and Jia 2013). The frame-
level ROC, pixel-level ROC curves, AUC and RD values are
demonstrated in Fig. 5, and Table. 1. Because of the space
limitation, the qualitative evaluation for temporal detection
is provided in the supplemental files.

Table 1: The performance comparison (%) of distinct approaches.
Method frame-AUCs pixel-AUCs RD
iForest 69.79 65.08 59.96

OC-SVM 55.01 67.77 62.18
iGRLSS - 57.42 54.99
DVAD 53.04 68.50 63.60
RDA 62.28 69.41 65.55
Ours 76.82 73.28 70.31

These results clearly show that the proposed method
(‘Ours’) is superior to others. DVAD demonstrates the worst
frame-level performance, which is based on the assump-
tion that the anomaly frames will not exceed 20% of the
total number of frames of a video. However, over 50% of
the videos violate this assumption. In addition, the dynamic
camera motion makes DVAD detect anomaly regions in al-
most all frames of the dataset, which causes many false-
alarms, as shown in Fig. 6(e). IGRLSS is an incremental
method which assumes that the first ten frames of a video be
normal, which is easily violated, thus the worst pixel-level
anomaly is generated. On the contrary, the traditional IForest
seems to be robust, and our method boosts its performance
with 7.03% and 8.2% for frame-level and pixel-level detec-
tion, respectively. RDA is a deep autocoder which is also
based on the rarity assumption of the anomaly in a video.
Therefore, it may cause a wrong decision when the anomaly
proportion is large. For example, Fig. 6(f) demonstrates ad-
verse detection results.

Discussion on Efficiency
In this work, the major time cost is the feature extrac-
tion stage, which is nearly the same as the other meth-
ods. Therefore, we will compare the time cost for inferring
the driving motion anomaly. Through observation, much
timeis almost consumed by the temporal isolation forest de-
cision layer. Based on the analysis in (Liu, Ting, and Zhou
2012), the time complexity of isolation forest construction is
O(nλ log s). We set λ = 100, β = 256 for each layer. The
largest n in the first layer is 106∗100 = 10600 and decreases
rapidly in the following layers. The normal motion sifting
process (normal encoding) costs about 15 seconds for all the
videos in this work, and abnormal motion sifting (abnormal
decoding) spends about 6 seconds for each video on a PC
platform with a 2.70GHz i7 CPU and 8GB RAM. There-
fore, the proposed method runs fastest compared with other
five methods. In addition, we also compare our method with
others for the time cost per frame with the same PC plat-
form, and the results are shown in Table. 2. From this table,

layer of VGG-F model with the size of 13*13*256. For a video
with 100 frames, we detected anomaly in a matrix of 16900
(13*13*100)*256, and obtained an anomaly score vector with size
of 16900*1. We reshaped it back as 100*13*13 and enlarged the
resolution as the original size of frame. We found iForest, OC-SVM
and RDA determined all frames as anomaly in this strategy.
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Figure 4: Some examples of detected spatial-anomaly maps when configuring different number of layers.
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Figure 5: ROC curves of frame-level and pixel-level evaluation of
various methods.

DVAD demonstrates the second efficiency, whereas RDA is
very time consuming.

Table 2: The running time (secs/frame) comparison between the
proposed method (‘Ours’) with five approaches.

Method iForest OC-SVM iGRLSS DVAD RDA Ours

Time cost 3 8 1.5 0.6 56 0.06

Conclusions
This work addressed the driving motion anomaly detec-
tion problem by an unsupervised multi-layer sifting pro-
cess, which is fulfilled by a simple but effective Multi-layer
Isolation-based Sifter (MLayer-iSifter) constructed by alter-
natively spatial-temporal pruning layers and isolation forest
decision layers. By learning the normal motion representa-
tion with group videos, this framework provided a compact
but discriminative normal motion representation for deter-
mining the driving motion anomaly, and can efficiently and
simultaneously detect the temporal anomaly frames and spa-
tial anomaly regions. Extensive experimental results on a
dataset with 106 videos manually labeled carefully by our-
selves demonstrate that the proposed method outperforms
five state-of-the-art approaches.
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